Lesson #8

e

e is a mathematical constant that is approximately equal to 2.71828. *e* is used in growth and decay problems in science and in finance, and has many other

applications. To enter e into the calculator, press

when entering only e shows the calculator's approximation for e.

Set 1 – Evaluate the expressions below.

LP#1 <i>e</i> =	8 <i>e</i> =	-2 <i>e</i> =	20 e=
LP#2 6 e=	-0.75 <i>e</i> =	15 <i>e</i> =	31 e=
R#1 2 <i>e</i> =	0.5 e=	-10 e=	13 e=
R#2 9 <i>e</i> =	12 e=	-30 e=	18 <i>e</i> =
R#3 7 e=	-4 <i>e</i> =	29 e=	55 e=

The Powers of *e*

There is a $2^{\rm nd}$ function on the calculator that can be used to find the powers of e.

To find a power of *e*, press

2nd		LN
	_	

LN

and enter the desired exponent.

Set 2 – Evaluate the following expressions.

	Tonowing expressions	1	
	e^{10} =	$e^{-5} =$	$e^{-6} =$
LP#2 e5=	e^2 =	$e^{-3} =$	$e^{-4} =$
$\mathbf{R} # 1$ $e^7 =$	e ⁸ =	e^{-11} =	$e^{-10} =$
R#2 <i>e</i> ⁹ =	e^4 =	e^{-7} =	$e^{-2} =$
$\mathbf{R}#3$ $e^{11} =$	e^6 =	$e^{-9} =$	$e^{-8} =$